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This paper extends our previous work on numerical analysis of blood flow in the heart. In 
that work the boundary forces were evaluated by solving a fixed-point problem. wluch we now 
reformulate as a problem in optimization. This optimization problem, which involves the 
energy function from which the boundary forces are derived. is solved by Murray’s modifica- 
tion of Newton’s method. The energy function turns out to be an extremely useful tool in 
modeling prosthetic heart valves. To enforce a constraint on the valve, we USC an energy func- 
tion which is zero when the constraint is satisfied and positive otherwise. The energy function 
must be invariant under translation and rotation so that conservation of momentum and 
angular momentum will be satisfied. We use this technique to construct computer models of 
several prosthetic valves, and we study the flow patterns of these valves in our computer test 
chamber. 

1. INTRODUCTION 

In 111, Peskin described a numerical method for blood flow in the heart with special 
emphasis on the-heart valves. This method is based on an Eulerian representation of 
the fluid on a fixed computational mesh and a Lagrangian representation of the im- 

mersed, elastic boundaries that interact with the fluid. An important aspect of the 
method is the computation of the boundary forces from the boundary configuration. 
To secure numerical stability, it is necessary to calculate these forces implicitly, as 
the solution of a certain nonlinear fixed-point problem. 

This fixed-point problem is solved in 11 1 by Newton’s method, and it is proved 
there that the relevant (symmetric) matrix is positive definite if the links that define 
the physical properties of the boundary satisfy certain sufficient conditions. One of 
these conditions states that the links do not resist compression. 

The modeling of prosthetic heart valves requires links that resist compression, so 
the methods of [ 1 1 are not guaranteed to work in the case of prosthetic heart valves. 
This rather serious shortcoming is completely overcome in the present paper. 

The way out of the difficulty described above was suggested to us by Olof 
Widlund, whose help we gratefully acknowledge. 

The first step is to reformulate the fixed-point problem as a problem of finding a 
stationary point of a certain function of the boundary configuration. It can then be 
shown that this function has an absolute minimum, in the neighborhood of which the 
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Hessian matrix is, of course, positive definite. There may be other regions, however, 
where this matrix is indefinite. 

The modified Newton’s method introduced by Murray [2) is specifically designed 
for this situation. Murray’s method reduces to Newton’s method in the positive 
definite regions and it generates a downhill search direction in the indefinite regions. 
The method requires a Cholesky factorization of the Hessian matrix by columns, and 
it modifies the matrix during the factorization if a negative (or small positive) element 
appears on the diagonal. In our case, it is very convenient to store the lower triangle 
of the Hessian matrix in the envelope or profile storage scheme [3] by rows. Accor- 
dingly, we need a special subroutine for the Cholesky factorization by columns when 
the matrix is stored in this way. It turns out that this can be achieved at the expense 
of doubling the amount of storage allocated for the matrix, and the resulting method 
is actually faster than a standard profile factorization because fewer tests are 
required. 

The latter part of this paper is concerned with an extremely useful by-product of 
the reformulation of our fixed-point problem as a minimization problem. The key step 
in this reformulation is the recognition that the boundary forces are derivatives of an 
energy function. This observation makes it easy to generalize the notion of a link 
structure that was used in [l] and to introduce forces that are functions of the coor- 
dinates of triples of points instead of pairs. Such forces are needed to simulate the 
constraints on the motions of artificial valves that are imposed by the cages in which 
they move. Forces that depend on triples of points are also very convenient in the 
modeling of structures that resist bending. To impose a constraint (approximately) on 
a triple of points, we simply introduce an energy function of the triple that is 
invariant under translations and rotations and that achieves its minimum when the 
constraint is satisfied. 

Finally, we use the methods developed in this paper to model a variety of specific 
prosthetic valves, and we study the flow patterns of these valves in a computer test 
chamber that models the left heart. For comparison, we also present the computed 
flow patterns of the natural mitral valve, and we give evidence that the conditions of 
pressure and flow in the computer test chamber are physiological. 

2. THE FIXED-POINT PROBLEM AND ITS REFORMULATION 

In ] 1 ] we describe the immersed boundary by a collection of points (x, x,~) and 
the boundary forces by certain functions of the boundary configuration 

fk(X, XN), k = 1, 2 ,... , N. (2.1) 

The forces actually applied to the fluid, however, are not obtained directly by 
evaluating these functions. Instead, a nonlinear system of the form 

x; = x:: + Af,(xT x,*), k = 1, 2,.. ., N, (2.2) 
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with A > 0 is solved by Newton’s method, and the forces used are given by 

e = f/(x? ‘.’ x.;>. (2.3) 

In these equations xz stands for xi + At u,“, where the superscript n indicates 1 = n At 
and where ui is the velocity of the kth boundary point at this time. Thus x: is known 
at the beginning of the time step from time level n to n + 1. If /1 is chosen 
appropriately, then xi is approximately the position of the kth boundary point at the 
end of this step; it is a better approximation than xi because it includes the effect of 
the boundary forces. Since we evaluate these forces at the configuration (x:,..., x$), 
we are using an (approximately) implicit scheme. This implicit method of calculating 
the boundary forces is needed for numerical stability. A more formal derivation of 
(2.2) is given in [ 1 J. In this paper we are concerned with the technical details 
involved in the solution of (2.2). 

Now suppose that the forces can be written in terms of an energy function 
E(x, x,) with continuous first derivatives. That is, 

f,=-a,E=- 

where ~9~ is the gradient with respect to the coordinates of the kth boundary point. It 
will be important in the following that E be bounded from below. In fact, we shall 
always have E > 0. 

Let 

$(x, “. x.) =+ J‘ 
k:l 

/Xk - xii’ + AE(x, “’ x,). (2.5) 

Then the stationary points of d are precisely the solutions of the fixed-point problem 
(2.2). 

Let x stand for the configuration (x, ‘.. x,,) and let /I 11 be the Euclidean norm. 
Then (2.5) reads 

g(x) = -+ 11x - x”l12 + iE(x). (2.6) 

Now $ is a continuous function with the property 4(x) --t fco as llxll--) co, since E is 
bounded from below. It follows that 4 has an absolute minimum at some point xx. 
That is, 4(x*) < g(x) for all x; we do not claim that x * is unique. Since 4 is differen- 
tiable, x” is a solution of our fixed-point problem (2.2). 

The significance of this result is as follows. First, it tells us that our fixed-point 
problem has at least one solution. There may be many other solutions including local 
maxima, saddle points, and local minima. Moreover, since the existence of at least 
one minimum is guaranteed, it makes sense to use an iterative method that searches 
for minima instead of a more complicated method that searches for stationary points 
in general. 
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3. THE MODIFIED NEWTON’S METHOD AND ITS IMPLEMENTATION 

In this section we briefly describe the modification of Newton’s method that was 
introduced by Murray 121, and we discuss the implementation of Murray’s algorithm 
in our case. 

We seek a local minimum of a function 4(x), where 4 is real and x is a point in R”. 
Let g be the gradient of 4, and let G = G“ be the Hessian matrix (matrix of second 
derivatives) of 4. The modified Newton’s method is an iteration of the form 

X’k+ I’ =X(k) + #dP’k), (3.1) 

where pck’ is the solution of 

(G’k’ + D’k’)p’k’ = -g’k’ (3.2) 

(with DCk’ a diagonal matrix discussed below), and where CL(~) is a positive scalar 
chosen to minimize 4 (kt ‘) In the terminology of optimization, pck’ is a search . 
direction, and the process of determining ack’ is called line search. 

System (3.2) is solved with the aid of the Cholesky factorization 

G’k’ + D’k’ = ,r/d(L’k’)T 3 (3.3) 

where Ltk’ is a lower triangular matrix. In fact, the matrix DCk’ is constructed during 
the factorization, in such a way that the following criteria are satisfied 

(i) (Gck’ + DCk’) is positive definite. (Otherwise the factorization does not 
exist.) 

(ii) The diagonal elements of Lck’ are greater than some positive constant 6. 

(iii) The off-diagonal elements of L’!+’ are bounded in magnitude by some 
preassigned constant p. 

The positive definiteness of Gck’ + DCk’ guarantees the fact that pck’ is a downhill 
search direction. To see this, just multiply both sides of (3.2) by (p’k’)r. In fact, when 
the first property is satisfied, we may say (following Murray) that pck’ is a steepest 
descent direction with respect to the norm 

11 y112 = yT(Gtk’ + Dck’)y. (3.4) 

The remaining two properties are needed to ensure the numerical stability of the 
algorithm. 

When Gtk’ is sufficiently positive definite, Murray’s algorithm automatically sets 
DCk’ = 0, and the method reduces to Newton’s method. This property of the algorithm 
depends on an appropriate choice of /I, as discussed in [2]. 

The rest of this section will be concerned, with an important detail of implemen- 
tation. In Murray’s algorithm [2], the construction of the lower triangular factor Ltk’ 
is carried out by columns, since a given diagonal element has a direct effect on the 
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size of the off-diagonal elements in its column. In our case, however, it is very 
convenient to use the profile storage scheme [3] for the matrix Gck’. This storage 
scheme uses two one-dimensional arrays A and IDIA. In A, the elements of the lower 
triangle of Gtk’ are stored by rows. In each row, however, only the elements from the 
first non-zero to the diagonal element are stored. We shall call these the active 
elements; they are precisely the elements that can be changed during the 
factorization. The array IDIA is a list of pointers to the diagonal elements of the 
matrix. Thus the active element (I, J) is stored in A(IDIA(I) - I + J) 

Unfortunately, this data structure is very inefficient for the task of locating all of 
the active elements in a given column. In our application, only a few rows (which are 
not adjacent) actually have active elements in any given column, but all of the rows 
would have to be tested to locate these active elements. This difficulty is overcome at 
the cost of doubling the storage requirements. We introduce two auxiliary one- 
dimensional arrays LRI and LDIA. The array LRI has the same length as A and it 
refers to the same active elements of the matrix. While A stores the active elements in 
their natural order by rows, however, LRI stores the row indices of the active 
elements in their natural order by columns. The array LDIA is a list of pointers to 
the diagonal elements in the list LRI. 

In our application [ 11, the graph of the matrices GCk’ is independent of k. 
Moreover, the graph is also constant from one time step to the next of the overall 
numerical method. Accordingly, the arrays LRI, LDIA, and IDIA are fixed integer 
arrays that can be initialized at the beginning of the run, so the cost of initialization 
is not important. 

To illustrate the use of this data structure, we give the FORTRAN fragment 
corresponding to 

L(I, J) = L(I, J) - L(I, K) * L(J, K), (3.5) 

which is the heart of the Cholesky factorization. In the following, the indices I and J 
are row indices of two active elements in column K. These elements have been 
located by generating two integers, LI and LJ, which satisfy 

Then, 

LDIA(K) < LI ,< LJ < LDIA(K + 1). (3.6) 

I = LRZ(LI), (3.7) 

J = LRI(LJ), (3.8) 

ZJ=IDZA(I)-Z+J, (3.9) 

IK=IDZA(I)-If K, (3.10) 

JK=IDIA(J)-J+K, (3.11) 

A(IJ) = A(ZJ) - A(IK) * A (JK). (3.12) 
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With this data structure, the entire Cholesky factorization can be carried out by 
columns within the framework of the profile storage scheme. No IF statements are re- 
quired except for the test for an empty column (i.e., a column with no active elements 
other than the diagonal element). It is also very easy to modify such a code so that it 
performs the factorization required by Murray’s algorithm. The resulting subroutine 
is actually faster than a standard profile factorization by rows, since the latter 
method requires a significant amount of testing. 

4. THREE-POINT FORCES 

In this section, we take further advantage of the fact that the boundary forces can 
be written as gradients of an energy function. In particular, we introduce a systematic 
procedure for modeling the constraints associated with rigid prosthetic valves. These 
constraints will not be imposed exactly, however. Instead, we introduce boundary 
forces which tend to drive the boundary points toward a configuration that satisfies 
the constraints. 

In this context it is very convenient and sometimes indispensable to use forces that 
depend on the configuration of triples of points. Such forces are described by func- 
tions 

fk(X1, x27x3), k= 1,2,3. 

The functions fk are not arbitrary, however, but must be chosen to conserve momen- 
tum and angular momentum. That is, 

k=l 
(4.2) 

(4.3) 
k=l 

These conditions are automatically satisfied if we choose an energy function 

E(x, 7 x2, x3) that is invariant under translations and rotations and then set 

f ,  = -ak E, 

as in Section 2. 
The choice of three-point forces to enforce a constraint is therefore reduced to the 

choice of a three-point energy function. This function should be invariant under tran- 
slation and rotation, it should take on the value zero when the constraint is satisfied, 
and it should be positive otherwise. The rest of this section will be concerned with 
specific functions of this kind that are useful in modeling prosthetic heart valves. 

First, we consider the cages that restrict the motions of prosthetic valves. Ball 
valves, for example, move in a cage that forces the ball to move along a line perpen- 
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dicular to the plane of the valve ring. In a two-dimensional model, the valve ring is 
represented by two boundary points x, and x2, We require that the center of the ball, 
xi, move along the perpendicular bisector of the line segment joining x, and x2. Let 

a=x,-xx,, (4.5 1 

b = x3 - +(x, + x2). (4.6) 

The constraint described above can then be formulated as a b = 0, and an energy 
function which enforces this constraint is 

E(x,, x2, x3) = $(a b)‘, (4.7) 

where C is a constant. For large C, the constraint will be rather strictly enforced. In 
practice, stability considerations set an upper limit on C. Obviously, E is invariant 
under translation and rotation. It takes on the value zero if the constraint is satisfied, 
and it takes on positive values otherwise. Note that E is a polynomial in the coor- 
dinates of the points x,, x2, and x3. This makes it easy to compute the first and 
second derivatives as required for Newton’s method. 

Next, consider the problem of keeping a sequence of points equally spaced along a 
straight line, as in the two-dimensional representation of a rigid disc. An energy func- 
tion that achieves this purpose can be written as a sum of three-point functions: 

E(x, ‘.. x,v,=;c’~’ /xk+, +x,&,-2x,/% 3, 
k-l 

(4.8) 

where h = l/N and C is a constant. Again, E has all of the required properties. In 
particular, E = 0 when the points x,, .” x,~ are equally spaced along a straight line. 
The scale of the configuration of points satisfying E = 0 is arbitrary, however, since 
E is a homogeneous (quadratic) function of the coordinates. This degeneracy can be 
removed, for example, by introducing a link that fixes the distance between x,, and x,. 

It may be worth mentioning that (4.8) is an approximation to the formula 

E = ; C .[,’ (4.9) 

which is the energy function of a linear beam. 
The energy function in each term of (4.8) keeps three points equally spaced along a 

straight line. This can be generalized in two different ways. Suppose that the point x, 
should be on the line joining x, and x2, but at some point other than the midpoint of 
that line. Then we use 

E=+C/x,-m-(1 -a)x,l’. (4.10) 

This construction is useful in the representation of a pivoting disc valve, which pivots 
about a point in the plane of the valve ring. 
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The other generalization involves a departure from the straight-line configuration. 
Suppose that the point x3 should be at the apex of an isosceles triangle whose base is 
the line segment joining x, and x2. Let p be the required ratio of height to base, and 
let ? be a unit vector perpendicular to the plane. The required energy function is 

E=:CJx,-4(x, +xz)-/3ix(xl-xI)/2. (4.11) 

This is very useful in the representation of curved, rigid valves. 
Finally, we remark that one-sided (inequality) constraints can also be enforced in 

this way. Suppose that the point x3 should lie in the half-space to the right of the vec- 
tor from x, to x2. That is, 

D=i’(x,-x,)x(x,-x,)20. (4.12) 

FIG. 1. Computer model of the caged ball valve. The circular shape is maintained by circumferential 
links (CD, DE,...) and radial links (OC, OD, OE,...). The lateral constraint of the cage is modeled by a 
three-point force which has the effect of keeping point 0 on the perpendicular bisector of AB; see Eqs. 
(4.5H4.7). The downward excursion of the ball is limited by links A0 and BO, which do not resist 
compression. The upward excursion is limited by a one-sided three-point force which prevents the point 
0 from entering the half-plane above the line AB; see Eqs. (4.12H4.13). Link AB maintains the 
diameter of the mitral ring. 

FIG. 2. Computer models of the eccentric monocusp valve. In (a) the rigidity of the valve is main- 
tained by a triangular network of links (EF, FG, EG,...) in a “railroad bridge” arrangement. In (b) it is 
maintained by three-point forces involving the triples EFG,...; see Eq. (4.8). As remarked following 
Eq. (4.8), a link CD is also needed in (b) to fix the length of the occluder. In both cases, the point C is 
constrained by a three-point force to slide along a line perpendicular to AB at A, and the limits of 
downward excursion are fixed by links AC and BD, which do not resist compression. Link AB 
maintains the diameter of the mitral ring. 
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FIG. 3. Computer model of the pivoting disc valve. The points of the occluder are held in a straight 
line by three-point forces with a single link fixing the overall length as in Fig. 2b. The pivot point D is 
held at a fixed point along the line AB by a three-point force of the type defined by Eq. (4. LO). Point E is 
prevented from entering the half-plane above the line AB by a one-sided three-point force; see 
Eqs. (4.12), (4.13). We do not set any limitation on the angle of opening this valve, but such a limit 
could be set by a link BE. Link AB maintains the diameter of the mitral ring. 

FIG. 4. Computer model of the curved pivoting disc valve. The points of the occluder (FGH,...) are 
held in a circular arc by three-point forces of the type defined by Eq. (4.1 I), and a link CE is used to fix 
the overall length of this arc. Other features are the same as in Fig. 3. 

An energy function which maintains this constraint is 

E=;CD', D<O, 
(4.13) 

= 0, D > 0. 

This construction can be used to model the stops that’limit the motion of prosthetic 
valves. 

We have used the energy functions specified above in the computer modeling of 
several prosthetic mitral valves. These are depicted in Figs. (l-4) and their computed 
flow patterns are shown in the next section. 

5. RESULTS AND DISCUSSION 

In [ 11, we described the representation of the left side of the heart for our computer 
studies of the mitral valve. The computer test chamber that we used in that paper will 
also be used here. It consists of an atrium and a ventricle, the walls of which have the 
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mechanical properties of heart muscle. There is a source of blood in the atrium which 
represents the return of blood to the left heart through the pulmonary veins. The 
entire structure is floating in fluid and there is a sink around the edges of the domain 
which accepts the volume displaced as the heart tills. We have checked that the 
pressure outside the heart is essentially constant (zero) in these computations, so we 
feel confident that the external fluid is not having any important influence on the 
results. Computer models of the mitral valve, natural or artificial, are mounted at the 
junction of the atrium and the ventricle. 

The physiology of our computer experiments may be described as follows. Each 
computation begins during the rapid relaxation of the ventricle at the moment when 
the falling ventricular pressure crosses the atria1 pressure. As the ventricular muscle 
continues to relax, the ventricular pressure falls below that of the atrium, mitral flow 
begins, and the mitral valve opens. Mitral flow reaches a peak and then slows down 
as the ventricular and atria1 pressures equilibrate. The next major event is atria1 
systole (contraction of the atrium) which produces a second peak of mitral flow and 
which is rapidly followed by ventricular systole and valve closure. The computation 
ends early in ventricular systole, before the ventricular pressure is high enough to 
open the aortic valve. For this reason we can avoid modeling the aortic valve for 
these computations, and the outflow tract of our model ventricle has a permanently 
closed end. 

In choosing the parameters of our computer test chamber we made an effort to 
establish physiological flow conditions. A detailed report on this effort will be 
published elsewhere, but the following remarks may be helpful here. First, we used 
the dog as a standard rather than man, since experiments on heart valves are usually 
done in dogs. In our choice of parameters, we were guided by the results of such 
experiments. In particular, we used unpublished records of left atria1 pressure, left 
ventricular pressure, and mitral flow as functions of time from the laboratory of E. L. 
Yellin; see [4]. 

Unfortunately, we cannot model these experiments directly. The major restrictions 
are low Reynolds number and two space dimensions. We lower the Reynolds number 
by scaling all lengths and times down by the factor y = l/25 from their physiological 
values. Since we retain the physiological density and viscosity of blood, this also 
scales the Reynolds number down by the factor y. The scaling operation changes the 
problem, so there is no rigorous reason to believe that the results are applicable to the 
dog heart. Nevertheless, it is important to compare our results with experiments. We 
can make a reasonable comparison if we first apply the inverse scaling to the 
computed solution. When this is done the theoretical and experimental results agree 
rather well (see below). This suggests, among other things, that the scaling procedure 
does not actually change the problem in an important way. It would be better, of 
course, if the computation could be performed directly at physiological Reynolds 
numbers. An important step in this direction has already been taken by McCracken 
and Peskin 151, where we use a vortex method and perform computations for the 
natural mitral valve at Reynolds numbers up to the physiological value. In the 
present work on prosthetic valves we use a finite difference method 16. 7) for the fluid 
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dynamics, and this imposes the restriction on the Reynolds number that has been 
described above. We see no reason why the methods of this paper could not be 
combined with vortex methods, but this has not yet been tried. 

The restriction of two space dimensions introduces a certain difticulty with respect 
to the use of mitral flow records. The quantity measured in Yellin’s experiments is the 
volume of blood per unit time crossing the plane of the mitral ring. The 
corresponding quantity in a two-dimensional calculation has units of area per unit 
time. This introduces an arbitrariness in the scale of the flow when the computed and 
experimental flows are compared. 

There is no such ambiguity in the pressure, and we set up the initial conditions for 
our computation in such a way that the common atria1 and ventricular pressure at the 
initial time agrees with the experiental value. The time scale is also unambiguous, and 
we choose the time of onset of atria1 and ventricular systole to correspond with the 
experimental records. 

(a) 

TIME 

k (bJ 

I 

TIME 

FIG. 5. Comparison of theory and experiment. Natural mitral valve. This figure shows computed (a, c) 
and experimental (b, d) records of flow and pressure as functions of time. Time scales and origin are the 
same in all cases. Pressure scales are also the same, but flow scales are arbitrary. Experimental records 
cover a full cardiac cycle, but the computed records stop in early ventricular systole. The two computed 
curves in (a) are records of flux through the valve ring and the tips of the leaflets, respectively. The latter 
flow (which is not available experimentally) starts later and shows no backflow during closure. Ex 
perimental records are tracings of unpublished data from the laboratory of E. L. Yellin (see (41). 
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In the following we give the results of computer experiments on the natural mitral 
valve and on various prosthetic valves. The numerical parameters for these 
experiments are the same as in [ 1 ] except that we refine the time step by a factor of 2 
during ventricular systole. Because of several improvements in the program, some of 
which are described in this paper, the computer time required for each run has been 
reduced from 120 to 40 min on a CDC 6600. 

Figure 5 shows the computed and experimental records of mitral flow and of atria1 

FIG. 6. Flow patterns of the natural mitral valve. This figure and those that follow show computec 
streamlines at equally spaced times. In frame (I) the valve is opening; note that streamlines cross thr 
leaflets. Vortices are shed from the tips of the leaflets in frame (2). and the vortex streamlines move the 
leaflets toward closure. Frames (3-5) show the characteristic flow pattern of ventrcular filling; note tha 
fluid moves toward the ventricle on both sides of the larger (anterior) leaflet. In frames (667) atria 
systole strenghtens the jet of forward flow and reinforces the vortex system. Closure has just begun it 
frame (7): it is completed by ventricular systole in frame (8). 
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and ventricular pressure for the natural mitral valve. Two flow waveforms are plotted 
in the computed case (Fig. 5a). One curve gives the flow crossing the valve ring; this 
is the quantity that is measured in experiments. The other gives the flow passing 
between the tips of the leaflets. These computed flows agree with each other during 
most of ventricular diastole, but the flow at the tips starts later when the valve is 
opening and it shows almost no trace of backflow during the closure movement of the 
valve. This proves that the spurt of backflow that appears at the valve ring involves 
fluid displaced by the moving leaflets, not fluid escaping between the tips of the 
leaflets. 

In general, the waveform of the computed mitral flow is similar to the experimental 

/- 

i 
: ’ 

FIG. 7. Flow patterns of the caged ball valve. The computer model of this valve is shown in Fig. I. 

Note the distinction between the flow pattern when the ball is moving forward (1) and after it has hit the 

end of the cage (2). Similarly. compare the closing pattern (8) with the closed flow pattern (9). 
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waveform. The computed flow reaches is peak at an earlier time, however, and then 
falls more rapidly. 

The computed and experimental pressure waveforms also have several features in 
common. In both cases, the pressures start together, separate as the ventricle relaxes 
and mitral flow begins, equilibrate as the mitral flow decreases, and separate again at 
the onset of atria1 systole and the second peak of mitral flow. When the ventricular 
pressure rises dramatically at the onset of ventricular systole, the atria1 pressure is 
protected from rising by the closed mitral valve, but the atria1 pressure waveform 
shows some characteristic bumps that can be seen in both cases. The most important 

FIG. 8. Flow patterns of the eccentric monocusp (a). The computer model is shown in Fig. 2a. This 
valve slides forward until it hits a stop; then it rotates to a maximum angle. Note that flow goes around 
both sides of the occluder (2). There is a definite change of shape of the ventricle in response to the 
strong jet striking the posterior wall in frame (3). Although a vortex is formed (2-S), it is not he\pfu\ in 
closing the valve, which closes late (9). 
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quantitative difference is that the computed atria1 and ventricular pressures are closer 
together than the corresponding experimental pressures during ventricular diastole. If 
we interpret the flows as being the same (which is questionable for reasons that have 
been discussed above), this means that the model valve offers less resistance to 
forward flow than the real mitral valve. This could be a consequence of using a two- 
dimensional model. It is possible, however, that part of the artifact is on the 
experimental side, since the flow meter that is used to make the measurements 
contributes an unknown amount to the resistance of the valve. 

Computed flow patterns of the natural mitral valve are shown in Fig. 6, and 
computed flow patterns for the various prosthetic valves which are the subject of this 
paper are shown in Figs. 7-12. 

FIG. 9. Flow patterns of the eccentric monocusp (b). The computer model is shown in Fig. 2b. This is 
a different model of the same prosthetic valve as in Fig. 8: the results are nearly identical. 
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There are certain features of these streamline plots which require explanation. 
First, we have a source in the atrium so the region where V u = 0 is not simply 
connected and the stream function is not single-valued. We avoid this difEculty by 
introducing a cut which extends from the source in the middle of the atrium to the 
sink around the edges of the domain. We compute the stream function w from the 
velocity field by quadrature, and we choose the path of integration so that it never 
crosses the cut. Once the values of I,U have been computed on the mesh, contour lines 
corresponding to equally spaced values of w are plotted by interpolation. The 

FIG. 10. Flow patterns of the pivoting disc (wide-angle). The computer model is shoan in Fig. 3. Th 
dominant feature of the flow pattern is the prominent vortex which forms at the tip of the disc in fram 
(2). The pivoting disc hehaves very much like the anterior leaflet of the natural valve. In this comput; 
tion there is no constraint on the angle of opening. which is determined entirely bg the fluid dynamic‘ 
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program that computes w and constructs the contour lines was written by Antoinette 
Wolfe. 

Another unusual aspect of these figures is that streamlines cross boundaries. This 
is, however, a simple consequence of the motion of our immersed boundaries, which 
move at the local fluid velocity [I]. It certainly does not mean that fluid particles 
cross boundaries. To check that they do not, we have run the following sensitive test. 
At 1 = 0, we put a fluid marker midway between each pair of adjacent boundary 
points. Like the boundary points, these markers were moved at the local fluid velocity 
using the same interpolation formula in both cases. Throughout the run, all of these 

FIG. II. Flow patterns of the pivoting disc (narrow-angle). The valve is the same as in Fig. IO except 

that the position of the pivot point has been moved closer to the center of the disc. As before. there is no 

constraint on the angle of opening. Despite this. the maximum angle of opening is much less than in 

Fig. IO, and the space available for forward flow is very much reduced. 
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markers moved as though they were part of the boundary with the exception of two 
markers: the marker nearest the tip of each leaflet was carried away by the flow. This 
result confirms that we have placed the boundary points close enough together with 
respect to the fluid mesh. 

The simple fact that streamlines cross moving boundaries is very important in 
understanding the flow patterns of blood in the heart. This remark is best illustrated 
by Fig. 7, which shows the streamlines of a caged ball, but it applies to all heart 
valves including the natural valve. When the ball valve is opening or closing, the 
streamlines pass through the moving ball. Accordingly the ball is not an obstacle to 

FIG. 12. Flow patterns of the curved pivoting disc. The computer model is shown in Fig. 4. As in the 
preceding two figures, the angle of opening is unconstrained. The valve is pivoted at the same point as in 
Fig. 10. but its maximum angle of opening is substantially smaller. This may be a consequence of lift on 
the curved valve. 
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flow at these times. It is only after the ball has reached its open or closed position 
that it acts as an obstacle. The flow patterns of valve opening and valve closure are 
very different from a sequence of steady flow patterns past the various intermediate 
positions of the valve. In a similar way, the streamlines of ventricular tilling are very 
different from the streamlines of flow in a fixed cavity with the shape of the ventricle. 
In ventricular filling the streamlines intersect the moving wall. In a fixed cavity, they 
do not. 

Figs. 8 and 9 show computed flow patterns for two different models of the same 
prosthetic valve. The two models are shown in Fig. 2. One model uses a double row 
of points with a triangular array of links to provide bending rigidity. The other model 
achieves the same result with a single row of points and three-point forces. The flow 
patterns and valve positions at corresponding times are practically identical, even 
with regard to small’details. This is a convincing demonstration that constraints can 
be enforced in different ways with the same results. 

The methods of this paper can be used for parametric studies of prosthetic valve 
design. We shall illustrate this with one example. Pivoting disc valves have a built-in 
constraint on the maximum angle of opening. It sometimes happens, however, that 
these valves fail to open to as wide an angle as the constraint would allow. This 
suggests that fluid dynamic effects can limit the angle of opening. To study this, we 
used a model valve with no constraint on the maximum angle of opening, and we 
systematically varied the position of the pivot point point. It might be thought that 
whenever the pivot is off-center the valve will open to an angle of 90”, but this is not 
the case. In fact, the angle of opening is always less than 90”, and it varies smoothly 
with the position of the pivot point. For corresponding experimental results, see 181. 

Two examples which we have labeled “wide-angle” and “narrow angle” are shown 
in Figs. 10, 11. In Fig. 10, the pivot is about i of the way across the valve ring. The 
valve opens widely enough that flow can go smoothly down both sides of the disc. In 
this configuration the disc appears to offer little resistance ot the forward flow. In 
Fig. 11, the pivot point is closer to the center of the disc. The angle of opening is 
substantially less, and the valve appears to be badly stenotic (high resistance) despite 
the absence of a mechanical constraint on the angle of opening. 

Finally, in Fig. 12, we study a curved pivoting disc valve. The curvature may 
generate lift, as with an airfoil. This would reduce the angle of opening, but it could 
help in valve closure. The valve is pivoted at the same point as in Fig. 10 (“wide 
angle”) but the maximum angle of opening is much less, and the flow patterns bear a 
greater resemblance to Fig. 11. A systematic study on the effect of curvature is 
planned. 

6. CONCLUSION 

We have overcome a fundamental difficulty in the application of [ 1 ] to prosthetic 
heart valves, and we have developed convenient techniques for modeling prosthetic 
mitral valves of any design so that their performance can be studied in our computer 
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test chamber. In the process, we have substantially reduced the computer time 
required for each run. 

Despite the limitations of the model, we have established reasonable agreement 
with experimental data for the case of the natural mitral valve. This makes us 
confident that the conditions of pressure and flow established by our computer test 
chamber are physiological and also that our natural valve results can be used as a 
standard of reference when we test prosthetic valves in the computer. 

In the area of applications, we have begun a series of detailed parametric studies 
aimed at improvements in prosthetic valve design. We are also using the 
computational method to study the normal and pathological function of the natural 
mitral valve. In terms of development of the method, the greatest challenge is to 
remove the limitations of low Reynolds number and two space dimensions. 
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